
Accounting Flexfield Design Principles

1

Design Principles for the Accounting Flexfield
Dr. Volker Thormählen, German Oracle User Group (DOAG e. V.)

1. Summary

This paper outlines the questions you need to ask in designing your Accounting Flexfield
when implementing Oracle Applications.

2. Definitions

The following Oracle terminology is used:

The Accounting Flexfield is the full account number you use to identify a general ledger
account in an Oracle Applications implementation. It comprises multiple Segments, such as
company, account, and department. A Value Set is the list of values for one segment, such
as the list of companies, the list of accounts, or the list of departments. Segment Values are
numbers or codes within each segment, such as companies:= { 01, 02, ... 99} , accounts:=
{ 010100, 010500, ..., 990000} , or departments:= { 1101, 1102, ..., 9999} .

An Accounting Flexfield Segment is either independent or dependent. An independent
segment has meaning on its own. A dependent segment is one that is linked to an
independent segment. Account_subaccount is the most common use for independent or
dependent segments.

A Summary Account is a combination of all segments and is a full Accounting Flexfield code
combination. Summary accounts are physically stored and updated with each journal entry
or budget posting.

The Parent (Child) of a segment value N is the node directly above (below) node N in a tree-
structured hierarchy over a single Accounting Flexfield segment. A Leaf is a node in the tree
with no children. Therefore, a leaf always represents the posting level. The height of a
hierarchy (e. g. the number of nodes on the longest path from the root to a leaf of the tree) is
limited only by the segment size.

The vertical structure of the Accounting Flexfield is defined by the parent/child relationships
set up over the segments and/or by summary accounts. Section 4 contains a detailed
comparison of both methods.

The horizontal structure of an Accounting Flexfield is defined by the name, number, size,
type and logical order of its segments. The same definition is valid for the formal structure of
an Accounting Flexfield, if (and only if) the physical location and the logical order of the
segments are equivalent.

Cross-validation Rules control which full Accounting Flexfield code combinations you can
create automatically.

For illustrated definitions see [VT96], page 235-257.

Accounting Flexfield Design Principles

2

3. General guidelines for the set up of the horizontal and vertical structure of the
Accounting Flexfield

General guidelines for determination of Accounting Flexfield segments include identification
of the dimensions of the business that may affect processing and on which you want to
report, especially across applications.

• Avoid redundancies. If a detail for a business dimension resides in one information

system or a set of highly integrated applications (for example, product revenue in AR) and
is not needed for processing, retain the detail in the system(s) and do not include it in the
Accounting Flexfield. On the other hand, if you capture detail product revenue, cost of
sales, and overhead in multiple information systems that all pass journal entries to GL
and you want to budget, allocate and analyse profitability by product, include the product
dimension in the Accounting Flexfield.

• Keep each business dimension as a separate segment. Do not combine into one

segment as this may complicate processing and reporting. Examples: Do not combine
company and division into one segment. Do not combine project and country into one
segment. Do not combine location and department into one segment, location followed by
department, as it may be difficult to default department number and to retrieve data for
the same department number across locations.

• Avoid having more than one meaning for one segment, for example a generic

subaccount for account, product and project. Having more than one meaning may make it
difficult to default segment values, to isolate different data for reporting, and to logically
assign numbers or codes to segments. Combining multiple dimensions into one segment
also precludes you from using more than one in an individual transaction, such as
entering both product and project on the same transaction in the generic subaccount
example.

• Maintain an appropriate level of detail within a segment. For example, if you include a

product dimension, determine if product line would be preferable. If you include product,
you will have more detailed transactions and resulting information, more code
combinations, and more GL balances. On the other hand, if you include product line, you
will have fewer detailed transactions, more summary financial results, fewer code
combinations, and fewer GL balances. However if product line in captured and the
product/product line relationship changes, transaction history using old product lines may
not be useful.

• Strive to have vertical structures above a single segment for reporting, rather than

enlarging the horizontal structure of the Accounting Flexfield or defining a structure above
two segments combined. For example, set up accounts as parents and subaccounts as
children within a dedicated account segment instead of separating account and
subaccount into two segments. Obviously, having two segments will result in more
complex cross-validation rules and more complex Flexfield population logic.

• Avoid embedding horizontal structures in the Accounting Flexfield such as

company_component_division_department. Instead set up a vertical structure using
parent/child relationships, such as the following multiple level hierarchy:

company level 1: company is a parent
component level 2: component is a parent
division level 3: division is a parent
department level 4: posting level: department is a child

Accounting Flexfield Design Principles

3

Using parent/child relationships will be most flexible if the company reorganises
frequently. You merely change relationships to reflect the new organisation and do not
need to reclassify balances to restate accounting history.
Using parent/child relationships may, however, turn out to be bad for reporting. You
cannot use parents to run most standard reports in GL. You would need to customise to
generate such reports or to use a decision support tool such as Business Objects. On the
other hand parents are favourable for FSG reporting and Mass Allocations. Therefore the
benefits of parent/child often outweigh the disadvantages, especially if you want to utilise
the extremely powerful Mass Allocations features of the GL module.

• Ensure your Accounting Flexfield will support Mass Allocations. For example, if you
want to allocate overhead cost to departments (rolling-up into divisions) you will need a
distinct department segment in the Accounting Flexfield. If you want to allocate based on
products, you will need a district product segment. If you want to allocate based on
projects, you will need a distinct project segment.

• Ensure your Accounting Flexfield is segmented properly to default segment values.

Make sure that set up defaults and other built-in features such as

• AutoAccounting (AR),
• FlexBuilder (PO, FA) or its successor in release 11 (Workflow), and
• Shorthand Aliases (GL)

are able to populate the Accounting Flexfield for all expected business transactions.
Otherwise you have to construct a customised population technique such as a table-
driven approach.

• Check whether localisations and/or statutory accounting are forcing you to define

additional segments. For example, a distinct segment for VAT processing was (and
probably is still required) in some countries, for example Norway or Germany, see [VT98],
page 183.

A common goal for international companies implementing in multiple sites and multiple
countries is one Chart of Accounts used world-wide. Such companies may find they need
to capture different information in different sites and countries based in business needs
and statutory requirements. A frequent approach is to maintain a common list of accounts
in the account segment with site or country-specific detail in an independent subaccount
segment that is controlled in each location and not consolidated to corporate
headquarters.

Unfortunately not all Oracle Applications modules support the subaccount approach. For
example, avoid using any other segments besides company, account and department
segments for Fixed Assets accounting.

In addition you cannot roll-up account_subaccount information using parent/child
relationships. This feature is limited to a single segment. If you need cross-segment roll-
ups you have to utilise summary accounts instead. (see section 4 for more details).

Accounting Flexfield Design Principles

4

• Check your true need for dependent segments. The advantages of dependent

segments are as follows:

• You do not need to set up cross-validation for independent/dependent
combinations since you set up each combination. Sometimes setting up
dependent segments is preferable to maintaining extensive cross-validation rules
for combination of two segments for which there are many values and no ranges
or other logic for valid code combinations.

• Dependent segments limit the values that appear in corresponding picklist pop-up
window.

• If you have repetitive values and descriptions in the dependent segment, you will
need to set up each combination.

The disadvantages of dependent segments are as follows:

• You cannot have multiple levels of cascading dependencies.
• You cannot set up parents over dependent segments, since they have no meaning

themselves.
• Since consolidations are based on rules for single segments rather than

combinations of segments, you cannot easily map different groups of dependent
segment values into different consolidated values.

• Place segments with defaults at the beginning or end of the Accounting Flexfield.

When the Accounting Flexfield pop-up window opens, the cursor will be in the first blank
(non-defaulted) segment. Once users complete all blank segments, they can press the
save/commit key to deactivate the pop-up window. For example it is always better to
order segments with account before department, if department is not always required.
Department can be defaulted, for example to ‘0000’, but can be changed after completing
the account number.

Accounting Flexfield Design Principles

5

4. Difference between Parents and Summary Acccounts

Summary accounts and parent/child relationships are means to set up the vertical
Accounting Flexfield structure. How do they differ?

Criterion Summary

Accounts
Parent/Child
Relationship

Direct posting of journal entries and
budgets possible?

No No

Physical storage and update with each
journal entry and budget posting?

Yes No

Requiring a full Accounting Flexfield
combination?

Yes No

Cross-segment set up possible? Yes No (1 segment only)
Is T (= Total) a valid segment value? Yes No
Usage in recurring journal formulas or
budget formulas feasible?

Yes No

Usage in mass allocation and mass
budgeting formulas feasible?

Yes (for constant
segments only)

Yes (for summing and
looping segments
only)

Usage in FSG row sets possible? Yes Yes
Usage in FSG column sets possible? No Yes
Usage in FSG content sets possible? No Yes
Online inquiry in GL possible? Yes No
Hint: You can assign segment types to Accounting Flexfield segments. You can choose one
of the following types: Looping, Summing, Constant. See GL reference manual for more
details. FSG:= Financial Statement Generator

Conclusions:

• You can view summary balances online in GL. You cannot inquire on parent account

balances as balances do not exist for parents.

• Use summary accounts if needed for online inquiry of summary balances and if needed

for allocations and reporting. Otherwise use parent/child relationships. Use parents if you
frequently reorganise.

The author can be contracted at volker.thormaehlen@doag.org or
 volker@dr-thormaehlen.de

Accounting Flexfield Design Principles

6

About the author:

Dr. Thormählen headed the Applications-SIG of the German Oracle User Group (DOAG) in
1995 and 1996. He was a member of the DOAG-board during the last two years. He has
published more than 20 articles on Oracle Applications. Most of them are written in German.
All articles can be downloaded as pdf-files from the internet: http://www.dr-thormaehlen.de

Literature:

[VT96] THORMÄHLEN, V, Die Kontierungsleiste eines mehrdimensionalen
Rechnungswesens in internationalen Konzernen, in: Betriebswirtschaftliches Controlling,
Planung - Entscheidung - Organisation, Hersg. Bernd Rieper, Thomas Witte, Wolfgang
Berens, Gabler Verlag, Wiesbaden 1996, ISBN 3-409-12909-X

[VT98] THORMÄHLEN, V. Pitfalls of Value Added Tax in Oracle Applications, in:
Vortragsband zur 11. Jahrestagung der DOAG-Konferenz Fellbach 1998, Proceedings,
Hersg.: DOAG e.V. Stuttgart, ISBN 3-928490-09-5

	About the author:

