Three-level Control Break Solutions

Five Solutions for the Three-level Control Break Problem
by Dr. Volker Thormé&hlen

The purpose of this article is to present 5 equivalent solutions for the 3-level control
break problem. Source code comes from Visual Foxpro, a powerful database and
programming language from Microsoft. Adaptation of the solutions to handle a n-level
(n=1, 2,3, ...) control break is rather simple due to the regularity of programming
techniques applied.

Sequential files are those that have been sorted into a specific sequence. Reports
prepared from sequential files may require:

» Detail printing — containing information from each specific record.
» Group printing — containing information that summarizes specific records.

Consider the Sales Report shown in Figure 1. This report contains both, detail
printing and group printing. Group totals are printed by branch, salesman, and
customer:

» There may be one or more invoices for each customer. However, only one line
should be print for each customer showing the total amount invoiced for that
customer.

» Totals will be printed for each salesman and each branch. At the end of the
report, the grand total of all sales will be printed.

Summary lines are marked by up to 3 asterisks depending on the level of the control
break (minor, intermediate, or major).

SALES REPCRT PAGE 1
BRANCH SALESMAN CUSTCOMER INVOICE SALES AMOUNT
1 10 77650 50372 2.968,88
1 10 77650 56746 55,46
1 10 77650 89805 485,83
1 10 77650 3.510,17 *
etc
3 18 TT663 4.066,8h *
3 18 776064 03911 2.344,15
3 18 TIlc64d 0bdhé 2.809,69
3 18 77664 33888 3.390,48
3 18 776064 5.0h44,32 *
3 18 TT766h 01399 368,14
3 18 TT766h 01695 5.590, 97
3 18 TT766h 5.959,11 *
3 18 84.888,20 =*
3 825.000,40 ***
GRAND TOTAL 2.653.999, 058

Figure 1: lllustrative cutting of Sales Report by branch, salesman, and customer

Page: 1/1

Three-level Control Break Solutions

The structure of invoice records used for printing the Sales Report are shown in
Figure 2. Corresponding records are sorted (indexed) in the following order:

1. Branch number - used for major break lines

2. Salesman number - used for intermediate break lines

3. Customer number - used for minor break lines

4. Invoice number - used for printing the invoice numbers in ascending order
within a given customer number; not at all necessary for the
3-level control break logic.

Field Field Name Type Width Decimals

1 INVOICE Character 5

2 BRANCH Character 1

3 SALESMAN Character 5

4 CUSTOMER Character 5

5 ITEM Character 5

4] SALES Numeric 13 2
Total 35

Figure 2: Data structure of the invoice table

Five solutions for the three-level control break problem will be presented:

1. ... using 4 nested DO loops (see Figure 3)
2. ... using a modular program design (see Figure 4)
3. ... using cascading procedures (see Figure 5)
4. ... using 2 switches (see Figure 6)
5. . using a strict top-down approach (see Figure 7)

All five solutions produce equivalent output as illustrated in Figure 1.

Figure 8 contains lower-level routines such as NEW _PAGE. All of them are used
commonly for the five control break programs.

A few documentary notes about each solution helps to explain the programming

tasks involved. In all programs in this article, note how consistent and self-
documenting the nhames are — those in procedures and data.

Page: 2/2

Three-level Control Break Solutions

set talk off
clear
set procedure to cbreak
DO initialization
uge invoice.dbf
index on branch+ salesman + customer + invoice tag combi key
go top
DO while .not. eo0f()
store 0 to total 3
old branch = branch
DO while old branch = branch .and. .not. eof()
store 0 to total 2
0ld salesman = salesman
DO while old salesman
old branch
store 0 to total 1
old customer = customer
DO while old customer
0ld salesman

salesman .and.;
branch .and. .not. eof()

customer .and.;
salesman .and.;

old branch branch .and. .not. eof()
DO process detail
ENDDO B
total 2 = total 2 + total 1
p line = space|6h)
p_line = stuffip line, coll, len({old branch), old branch)
p line = stuffip line, colZ,len{old salesman),old salesman)
p_line = stuffip line, col3,len{old customer),old customer)
p line = stuffip line, col5,len(transformitotal 1,pic)),transform({total 1,pic))
p_line = stuff(p line,colé,1,"*")
DO Prt Line
ENDDO B
total 3 = total 3 + total 2
p line = space|6h)
p_line = stuffip line, coll, len({old branch),cld branch)
p_line = stuffip line, colZ, len{old salesman), cld salesman)
p line = stuffi{p line, colb,len(transformitotal 2,pic)),transform({total 2,pic)
p_line = stuff(p line, colé,Z,"**")
DO Prt Line
ENDDO B
grand total = grand total + total 3
p line = space|65)
p_line = stuffip line, coll,len(old branch), old branch)
p line = stuffip line,col5,len({transform({total 3,pic)},transform({total 3,pic)
p_line = stuffi{p line, cole, 3, "***")
DO Prt Line
ENDDO B
p_line = space(63)
p line = stuffip line, 20,11, "GRAND TOTAL™)

p_line stuff(p_line,ceold, len({transform({grand total,pic)), transform{grand total,pic)
DO Prt Line

close database

set procedure to

set talk on

return

Figure 3: 1% solution for the 3-level control break problem using 4 nested DO loops

The purpose of all solutions is to take the sorted (or indexed) invoice table and
produce the output as illustrated in Figure 1. As specified, a detail line is required for
each invoice. Summary lines are required for each branch, salesman, and customer.
Another summary line is required for the overall grand total. Consequently, the logic
is more involved than simply obtaining an invoice record, making a few calculations,
and printing the results.

Page: 3/3

Three-level Control Break Solutions

A common subroutine, which is stored in ‘cbreak’ is called for ‘initialization’. Four DO
loops are controlling execution of the program. Note that the outmost DO loop covers
all records in the invoice table. The innermost DO loop summarizes and prints all
sales amounts for a given customer number.

Studying the structure of the source code quickly reveals how it could by generalized
to handle more than 3 levels of totals. In general (n+1) DO loops are required for
solving a n-level control break problem.

set talk off

clear

set procedure to chreak

do initialization

store 0 to total 1, total 2, total 3

use invoice.dbf

index on branch+ salesman + customer + invoice tag combi key

go top

old branch = branch
old salesman = salesman
old customer = customer

DO while .not. eof()
IF branch > old branch
DO customer change
DO salesman_change
DC branch change
ELSE
IF salesman > old salesman
DO customer_phgnge
DO salesman_ change
ELSE
IF customer > old customer
DO customer_chgnge
ENDIF
ENDIF
ENDIF
DO process_detail
ENDDO
DO customer change
DO salesman change
DO branch change
p line = space(65)
p_line = stuffi{p line, 20,11, "GRAND TOTAL™)
p line = stuffip line, col5,len(transformi{grand total,pic)), transform({grand total,pic)
DO Prt_Line
close database
set procedure to
set talk on
return

Figure 4: 2" Solution for the 3-level control break problem using a modular program
design

A significant new element in the 2™ solution compared to the previous one is, of
course, the frequent use of subroutines called by corresponding DO statements. As
programs become larger in size and complexity, it becomes increasingly necessary
to standardize and organize the programming approach. It becomes more essential
to segment the program for purposes of clarity.

Page: 4/4

Three-level Control Break Solutions

Although the ‘segments’ will be written as separate routines, they do not precisely fall
within the general definition of a subroutine, that is, a routine that is used by different
parts of the program. This is usually not the case in modular programming. The
program is subdivided into these segments mainly for the purpose of clarity. It has no
particular advantage in the use of memory. It does, however, have the following
advantages:

» Thinking is organized around the main structure of the program. The various
more complicated but less relevant routines are kept separate.

» subroutines may be developed and debugged separately.

» It permits easier legibility for others who subsequently will have to read and
understand the program

procedure branch change
grand total = grand total + total 3

p_line = space(63)

p line = stuffip line, coll,len{old branch),old branch)

p_line = stuff{p line, cold, len(transformitotal 3,pic)),transform({total 3,pic)
p_line = stuff(p_line,colé, 3, "***"

DO Prt_Line
store 0 to total 3
old branch = branch

return

procedure salesman change
total 3 = total 3 + total 2

p_line = space(63)

p line = stuffip line, coll,len{old branch),old branch)

p_line = stuffip line,colZ,len{old salesman}, cld salesman)

p line = stuff{p line, colb,len(transformitotal 2,pic)),transform({total 2,pic)
p line = stuffip line, cole, 2, "**")

DO Prt_Line

store 0 to total 2

old salesman = salesman
return

procedure customer change

total 2 = total Z + total 1

p_line = space(63)

p line = stuffip line, coll,len{old branch),old branch)

p_line = stuffip line,colZ,len{old salesman}, cld salesman)

p line = stuffi{p line, col3,len{old customer),old customer

p line = stuff{p line, colb,len(transformitotal 1,pic)),transform({total 1,pic)
p_line = stuffip line,colé,1,"*"

DO Prt Line

store 0 to total 1

old customer = customer
return

Figure 4: Continued

Page: 5/5

Three-level Control Break Solutions

set talk off

clear

set procedure to chreak

DO initialization

use invoice.dbT

index on branch+ salesman + customer + invoice tag combi key

go top
store 0 to total 1, total 2, total 3
old branch = branch

old salesman = salesman
old customer = customer
DO while .not. ecf()
DO CASE
CASE branch > old branch
DO branch_ghan&e
CASE salesman > old salesman
DO salesman_chan&e
CASE customer > old customer
DO customer_phan&e
ENDCASE
DO process_detail
ENDDO
DO branch change
p_line space (653)
p line stuff(p line, 20,11, "GRAND TOTAL™)
p_line stuff{p_line, col’, len({transform{grand total,pic)), transform({grand total,pic)
DO Prt Line
close database
set procedure to
set talk on
return

Figure 5: 3" solution for the 3-level control break problem using cascading
procedures

Also the 3" solution handles control breaks as subroutines. As opposed to the
previous solution control break routines now call lower-level routines. For example,
the BRANCH_CHANGE routine calls the SALES_CHANGE routine which, in turn,
invokes the CUSTOMER_CHANGE routine.

A second difference arises from substitution of 3 nested IF statements by a single
CASE statement.

Page: 6/6

Three-level Control Break Solutions

procedure branch change

DO salesman change

grand total = grand total + total 3

p line = space(65)

p_line = stuffi{p line, coll, len({old branch), cld branch)
p line = stuff{p line, colb,len(transformitotal 3,pic)),transform{total 3,pic)
p_line = stuffip line, col6, 3, "***"

DO Prt_Line

store 0 to total 3

old branch = branch

return

procedure salesman_change

DO customer change

total 3 = total 3 + total_ 2

p line = space(65)

p_line = stuffi{p line, coll, len({old branch), cld branch)

p line = stuffip line, colZ,len{old salesman},cld salesman)
p_line = stuff{p line, cold, len(transformitotal Z,pic)), transform({total 2,pic)
p_line = stuff{p line, colé,Z,"**")

DO Prt Line

store 0 to total 2

old salesman = salesman

return

procedure customer change

total 2 = total Z + total 1

p_line = space(63)

p line = stuffip line, coll,len{old branch),old branch)

p_line = stuffip line,colZ,len{old salesman}, cld salesman)

p_line = stuff{p line, col3, len(old customer),old customer

p line = stuff{p line, colb,len(transformitotal 1,pic)),transform({total 1,pic)
(

p_line = stuffip line,colé,1,"*"
DO Prt Line

store 0 to total 1

old customer = customer

return

Figure 6: Continued

Page: 7/7

Three-level Control Break Solutions

set talk off

clear

set procedure to chreak

DO initialization

store .f. to branch flag, salesman flag

store 0 to total 1, total 2, total 3

use invoice.dbT

index on branch+ salesman + customer + invoice tag combi key

go top

old branch = branch
old salesman = salesman
old customer = customer

DO while .not. eof()
IF branch > old branch
store .t. toibranch_flag, salesman flag
DO customer change
ELSE
IF salesman > old salesman
store .t. to sglesman_flag
DO customer change
ELSE
IF customer > old customer
DO customer_chgnge
ENDIF
ENDIF
ENDIF
DO process_detail
ENDDO
store .t. to branch flag, salesman flag
DO customer change
p_line = space(63)
p line stuff(p line, 20,11, "GRAND TOTAL™)
p_line stuff(p_line,ceold, len({transform({grand total,pic)), transform{grand total,pic)
DO Prt Line
close database
set procedure to
set talk on
return

Figure 6: 4™ solution for the 3-level control break problem using 2 switches

This time, a switch is turned on to record the fact, that a particular level of control
break has occurred. Printing of totals can proceed starting at the lowest level. The
state of the switches is used to decide at which level to stop printing of totals.

Switches can be very useful when used in moderation. However, the use of

numerous switches in a program can make it very confusing and difficult to follow and
should be avoided if possible.

Page: 8/8

Three-level Control Break Solutions

procedure branch change

grand total = grand total + total 3

p_line = space(63)

p line = stuffip line, coll,len{old branch),old branch)
p_line = stuff{p line, cold, len(transformitotal 3,pic)),transform({total 3,pic)
p line = stuffip line, cols,3, "***"

DO Prt_Line

store 0 to total 3

old branch = branch

store .f. to branch flag

return

procedure salesman_change
total 3 = total 3 + total 2
p_line = space(63)
p line = stuffip line, coll,len{old branch),old branch)
p_line = stuffip line,colZ,len{old salesman}, cld salesman)
p line = stuff{p line, colb,len(transformitotal 2,pic)),transform({total 2,pic)
p_line = stuff{p line, colé,Z,"**")
DO Prt_Line
store 0 to total 2
IF branch flag
DO braﬁch_phange
ENDIF
old salesman = salesman
stere .f. to salesman flag
return

procedure customer change

total 2 = total 2 + total 1

p line = space(65)

p:line = stuff({p line,cecll,len{old branch},cld branch)

{
p_line = stuffip line,colZ,len{old salesman}, cld salesman)
{
p_line = stuff{p line, cold, len(transformitotal 1,pic)),transform({total 1,pic)

(
(
p line = stuffip line, col3,len{old customer],cld customer)
(
(

p line = stuffip line, cols,1,"*"
DO Prt Line
store 0 to total 1
IF salesman flag
DO salesﬁan_change
ENDIF
old customer = customer
return

Figure 6: Continued

Page: 9/9

Three-level Control Break Solutions

set talk off
clear
set procedure to chreak
DO initialization
use invoice.dbT
index on branch+ salesman + customer + invoice tag combi key
go top
DO while .not. eof()
DO branch change
ENDDO

p line = space(65)
p_line = stuffi{p line, 20,11, "GRAND TOTAL™)
p line = stuffip line, col5,len(transformi{grand total,pic)), transform({grand total,pic)

DO Prt Line
close database
set procedure to
set talk on
return

Figure 7: 5" solution for the 3-level control break problem using a strict top-down
approach

Four DO loops are used to control the flow of the 5" solution. In this respect it is
similar to the 1 solution. The distinction comes not only from handling the control
breaks as subroutines. In addition each of them contains a DO loop that drives the
next lower-level control break routine. For example, routine BRANCH_CHANGE
drives the subordinate routine SALESMAN_CHANGE. This routine calls its lower-
level routine CUSTOMER_CHANGE. This subroutine, in turn, calls its subordinate
routine PROCESS_DETAIL. Thus, all control break subroutines are linked together in
a strict top-down manner.

Page: 10/10

Three-level Control Break Solutions

procedure branch change

old branch = branch

total 3 =0

DO while old branch = branch
DO salesman_change

ENDDO
grand total = grand total + total 3
p line = space(65)

(
p_line = stuffi{p line, coll, len({old branch), cld branch)

p line = stuff{p line, colb,len(transformitotal 3,pic)),transform{total 3,pic)
p_line = stuffip line, col6, 3, "***"

DO Prt_Line

return

procedure salesman_change
old salesman = salesman
total 2 = 0
DO while old salesman = salesman
DO customer change
ENDDO
total 3 = total 3 + total_ 2
p line = space(65)
p line = stuffip line, coll,len{old branch),old branch)
p_line = stuffip line,colZ,len{old salesman}, cld salesman)
p line = stuff{p line, colb,len(transformitotal 2,pic)),transform({total 2,pic)
p line = stuffip line, colé, 2, "**")
DO Prt_Line
return

procedure customer change

old customer = customer

total 1 =0

DO while old customer = customer .and. .not. eocf()
DO process detail

ENDDO

total 2 = total Z + total 1

p_line = space(63)

p line = stuffip line, coll,len{old branch),old branch)

p_line = stuffip line,colZ,len{old salesman}, cld salesman)

p_line = stuff{p line, col3, len(old customer),old customer

p line = stuff{p line, colb,len(transformitotal 1,pic)),transform({total 1,pic)
(

p_line = stuffip line,colé,1,"*"
DO Prt Line
return

Figure 7: Continued

Page: 11/11

Three-level Control Break Solutions

procedure initialization

pubklic pic, coll, colZ, col3, cold, colb, colé

public line limit, line cnt, page cnt, grand total

pilc = "##, #4#, ###, ##4.#4" &8 picture definition for ceclumn 5

coll = 0 §&& gtart of branch column

colZ = 10 && start of salesman column

col3 = 20 §&& ztart of customer column

cold = 30 && start of invoice column

colb = 40 && start of (total) sales amcunt column
coli = 58 §&& gtart of control break indicator column
line limit = 50 && number of pint lines per page

line cnt = 99 && print line counter

page_cnt = 0 && page counter

grand total = 0 && grand total

return

procedure process_detail

total 1 = total 1 + sales

p line = space(65)

p_line = stuffi{p line, coll, len({old branch), cld branch)

({
p_line = stuffip line,colZ,len{old salesman}, cld salesman)
p line = stuffi{p line, col3,len{old customer),old customer
p_line = stuffip line,cold, len({invoice),invoice)
p line = stuff{p line, colb,len(transformisales,pic)), transform{zales, pic)
DO Prt_Line
skip
return

procedure Prt Line
IF line cnt >= line limit
DO New_Page

ENDIF

? p line at O font 'courier’
line _cnt = line cnt + 1
return

procedure New Page

page cnt = page cnt + 1

? "SRALES REPCORT" at 25 font Tcourier’
?7 "PAGE" at 56 font Tcourier’

?? stripage_cnt,3) at colé font "courier’
?

? "BRANCH" at cecll font "courier’
?7 "SALESMAN" at cclZ font 'courier’
?7? "CUSTOMER™ at col3 font 'courier’
?7 "INVOICE™ at ccld4 font "courier’
?7? "SALES AMOUNT" at 46 font 'courier'
line _cnt = 3

return

Figure 8: Common procedures
There are 4 common procedures. They are used by all 5 solutions for:
> initialization,
» detail processing,
» printing of detail and summary lines,
» testing of page overflow.

Due to the regularity of the n-level control break problem it is rather simple to write a
program that generates corresponding source code.

Page: 12/12

